Partial Sum of Geometric Series
Theorem
The sum of the first \(n\) terms of a geometric series given by initial term \(a\) and common ratio \(r\) is
\[ \frac{a(1 - r^n)}{1 - r}.\]
Proof
Consider the sum
\[ \sum_{k = 0}^{n - 1} a r^k = a + ar + \dots + ar^{n - 1}.\]
Finding a general expression for the limit of such a sum is just an exercise in re-indexing sums. We proceed as follows
\[\begin{align*}
S &= \sum_{k = 0}^{n - 1} a r^k \\
&= a \sum_{k = 0}^{n - 1} r^k \\
&= a + a \sum_{k = 1}^{n - 1} r^k \\
&= a + ar \sum_{k = 1}^{n - 1} r^{k - 1} \\
&= a + ar \sum_{k = 0}^{n - 2} r^k \\
&= a + ar \left(\left(\sum_{k = 0}^{n - 2} r^k\right) + r^{n - 1} - r^{n - 1} \right) \\
&= a + ar \left(\sum_{k = 0}^{n - 1} r^k\right) - ar^n \\
&= a + r \left(\sum_{k = 0}^{n - 1} ar^k\right) - ar^n \\
&= a + r S - ar^n \\
(1 - r)S &= a - ar^n \\
S &= \frac{a(1 - r^n)}{1 - r}. \\
\end{align*}\]